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Lid-driven recirculating f low in a triangular cavity is simulated at 
different Reynolds numbers, using a multigrid solution procedure 
for the Navier-Stokes equations discretized on triangular grids. The 
discretization uses a control volume methodology, with linear inter- 
nodal variation of the f low variables. The use of the multigrid tech- 
nique provides rapid and grid-independent rates of convergence. 
Richardson extrapolation is used to obtain accurate representations 
of the f low field for all reported Reynolds numbers. The most sig- 
nificant feature of the f low is the occurrence of a sequence of eddies 
of rapidly decreasing intensity towards the stationary lower corner 
of the cavity. Streamtraces of the eddies, contours of vorticity, and 
plots of the centerline velocity and pressure are presented. The 
solution at low Reynolds numbers is compared with the analytical 
results of Moffat. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Shear driven flow in a square cavity has been the object of 
a large number of numerical studies in computational fluid 
dynamics (cf. [1-7]). Here, the recirculating flow of the en- 
closed viscous fluid is driven by the shearing motion of the 
top wall, which is translated at a uniform velocity. The attention 
this problem has received is largely due to the simplicity of the 
geometry and boundary conditions, coupled with the interesting 
flow features observed at different Reynolds numbers. It has 
been repeatedly used to test new developments in numerical 
methods for internal flows. Perhaps the most comprehensive 
study of the flow field and eddies at different Reynolds numbers 
is that due to Ghia et  al. [5]. 

There have been fewer numerical studies of the driven cavity 
problem in complex geometries, although such geometries are 
encountered in a variety of engineering equipment such as 
automotive passages, heating ducts with fins, inlets, and com- 
bustors. In particular, sharp comers are associated with many 
of these geometries. An idealization of flow near a sharp corner 
is the driven cavity problem in a triangular geometry, which 
has been investigated here. 

The apparent lack of interest in geometries other than the 
square, is mainly due to difficulties encountered in representing 
the complex flow geometries using structured grids. There have, 
however, been a few studies of flow in curved and nonrectangu- 

107 

lar geometries. Recently, Vynnycky and Kimura [8] reported 
the results of their study of steady flow in a driven quarter- 
circular cavity. In an earlier work, Ribbens et  al. [9] described 
the flow in an elliptic region with a moving boundary. The 
flow in a trapezoidal cavity was studied by Darr and Vanka 
[10]. Although curved and nonrectangular geometries may be 
represented using curvilinear and nonorthogonal structured 
grids, the triangular cavity is an example that poses a severe 
test for structured grid-based numerical methods. Many of the 
problems encountered have been explained in detail by Ribbens 
et  al. [11]. Their problems arose mainly from the treatment of 
the corners, which gave rise to singular systems of equations 
for the centered finite difference and colocation schemes that 
they attempted. Even the scheme which was finally used suc- 
Cessfully for the equilateral triangle, by transforming the prob- 
lem to an equivalent one on an isosceles right triangle, was 
expected to lead to a singular problem for a scalene triangle. 
No such problems are encountered with the use of triangular 
grids as presented here. The comers do not require special 
treatment, and the numerical scheme reduces to a straightfor- 
ward procedure for any geometry. 

The triangular cavity also exhibits interesting flow features 
that have been analytically studied by Moffat [12] in the Stokes 
regime and by Batchelor [ 13] in the inviscid or infinite Reynolds 
number regime. The most interesting feature of the flow is the 
occurrence of an infinite sequence of eddies of decreasing size 
and rapidly decreasing intensity towards the stationary corner. 
Because of the rapid decrease in eddy size and intensity towards 
the corner, it is difficult to resolve more than a few eddies 
either experimentally or numerically. However, they can be 
determined analytically for Stokes flow, which is a reasonable 
representation of the flow field near the stationary corner [ 12]. 
Moffat [12] has also shown that sufficiently close to the comer, 
the flow is independent of that in the farther regions, and the 
intensities of the eddies as well as their distances from the 
corner follow geometric sequences. This was indeed observed 
in the present computation and will be discussed in the results 
section. At infinite Reynolds number, Batchelor [ 13] has shown 
that the interior region attains constant vorticity. 

In the following sections, we will first present the details 
of the numerical procedure employed to solve the governing 
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Geometry and coordinate system for the triangular cavity. 

equations, with a brief description of the multigrid strategy used 
for accelerating the rate of convergence. In the next section, the 
results of the computations at different Reynolds numbers will 
be presented, in the form of plots of the streamtraces in the 
flow field, constant vorticity contours, the centerline velocities 
and pressures, and the location of the eddies. Grid independent 
results will be presented by Richardson extrapolation, using 
the results obtained on two consecutive grids. 

2. GOVERNING EQUATIONS AND 
N U M E R I C A L  PROCEDURE 

Figure 1 shows the geometry of the triangular cavity, with 
the coordinate system used here. Although Ribbens et al. [11] 
performed their study in an equilateral triangle, here we have 
used a smaller angle at the stationary comer, in order to capture 
more of the eddies and to verify Moffat's [12] predictions. In the 
flow region, we solve the Navier-Stokes equations governing a 
two-dimensional, steady, incompressible flow of constant fluid 
properties. These equations are written in primitive variables 
(u, V, p) as 

V -  ( u u )  = - (OplOx) + vV. (Vu) + B. 

V -  ( u v )  = - O p / a y )  + u V .  ( V v )  + By 

V ' u = 0  

shown in Fig. 2a. We use a control volume procedure essentially 
the same as that described in Prakash and Patankar [14], except 
that we have preferred to retain the central differencing scheme. 
In Prakash and Patankar [14] and related works, an exponential 
variation was introduced for stability at high cell Peclet num- 
bers. Although such a differencing scheme provides stability, 
it reduces the accuracy to first order and is not satisfactory. 
The same is true of other first-order upwind schemes, which 
ensure stability, but lead to unacceptable large dissipative er- 
rors. It is possible to use higher-order upwind schemes that 
ensure both stability and accuracy, but we have retained central 
differencing for simplicity and second-order accuracy. Cur- 
rently we have refined the finest mesh, until the cell Peclet 
number decreases below the stable value. Thus for a given grid, 
there exists a maximum flow Reynolds number that cannot 
be exceeded. 

Figure 2a also shows the control volume constructed around 
a representative node P, by joining the centroids of the relevant 
triangles to the midpoints of the sides. The equations are inte- 
grated over each of these control volumes to obtain nodal values 
of pressure and velocity. The checker-board split in the pressure 
field that arises in such equal-order interpolation is avoided, 
by requiring a different set of velocities (~, ~), located at the 
cell interfaces, to satisfy mass continuity. This practice is similar 
to the momentum interpolation concept used in collocated finite 
volume schemes for structured grids [15-17]. 

We now describe the details of the discretization procedure. 

2.1. The Discretization Scheme 

The Momentum Balances. Integrating Eq. (1) over the dis- 
crete control volume ABCDEF, we have 

Using the divergence theorem, we can write the above equa- 
tion as 

(4) 

where S is the enclosing surface of control volume V. 

(1) Consider now element PAB (Fig. 2(b)), which has two faces, 
(2) alc and ca3, bounding the control volume around P. The contri- 

butions from these two surfaces to the flux balance can be 
(3) written as 

Here u and v are the two components of the velocity vector u, 
and p is the pressure divided by the density; t, is the kinematic 
viscosity, and B~ and B~ provide a means to include other forces 
such as those due to gravity and rotation. 

The above equations are discretized on a triangular mesh 

a I c ~ P a l c a  3 

where 

(5) 
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FIG. 2. (a) Unstructured mesh with control volume around node P. (b) Element PAB and local coordinate system. 

J~ = uu - vVu. 

To compute the flux J . ,  we use a linear interpolation of veloci- 
ties between the nodes of  PAB. Thus, 

u = a . x  + b . y  + c .  

v = aox + boy + co. 
(6) 

The pressure p, likewise, assumed to vary linearly and is 
given by 

p = apx +bpy+cp.  (7) 

It is convenient to integrate the flux terms in local coordinates 
(X, Y), defined with the origin at the centroid of the element. 
This yields an expression for the contribution from element 
PAB to the equation at P as 

1 I ~ (X.J .~ - Y~,L,) dS + 
"X/X], + y2 ~. 

a I 
~/-X2 3 + Y:a, 

× a3(Ya3J, x-Xa3J,  r ) d S -  B , - ~  3 ' 
c 

(8) 

where (Op/Ox) is constant over the element PAB. Expanding 
J~x and J,v, the X and Y components of  J , ,  using expressions 
for u, we get 

].~ = ~u~  + A u .  + Au. )u  

v \ Ox -~x + u8 , 

(9) 

where fp, fA, and fB are linear shape functions. The integrals in 
Eq. (8) are evaluated by Simpson's rule, giving 

,lff'J dS = lalcll6[J(aO + 4J(bl) + J(c)]. (10) 

After collecting like terms and simplifying the complete equa- 
tion, it can be shown that the resulting equation has the form 

(11) 

where up is the value of u at point P and U.o represents values 
at the neighboring nodes A, B, C, D, E, and F. Vp is the area 
of the control volume around P, and ( ) is an average defined by 

(B) - -  (1/Vp) ~ [(AJ3)B,], (12) 
e 

where Ai is the area of element i around P, and ~e denotes 
summation over all the elements contributing to Vp. The expres- 
sions for the coefficients are not provided here, but can be 
derived by the above-mentioned steps. Following the same 
procedure for Eq. (2), we can obtain the discretized y-momen- 
tum balance as 

Apvp = E A.ov.b + Vp (Bv - ~yy)p. (13) 

It is convenient to define momentum velocities fi and O as 

so that 

f~ = (~  A.bu.b)/Ap, f) = (]~ A.oV.o)/Ap, (14) 

u = ~t + VP ( Bu - Op~ 

and 
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(15) 

The Continuity Equation. In the present procedure, u and v 
located at the nodal points do not satisfy the continuity equation. 
Rather, the cell face fluxes are balanced for each control volume. 
These cell face fluxes are interpolants of the nodal values in a 
special way that preserves the connections between the nodal 
pressures. The practice is similar to the momentum interpolation 
scheme used in finite volume schemes with a collocated ar- 
rangement of velocities and pressure [1 5-1 7]. 

We define a new set of velocities ~ and ~, located at the 
interfaces and related to fi and 0 by 

( op) 
F ~ = h + D  B . - ~ x  

(16) 

The values of D at points within the element are linearly interpo- 
lated from the nodal values. The pressure gradients (ap/ax) and 
(Op/Oy) are now local at the cell faces and can be related to 
the nodal pressures (Pc, PA, PD through the relations 

@ _ af~ aA af~ 
O---£ - 3xPP + ~x Pa + E P~ 

and 

@ _ af~ afA aT. 
3y - O-y p e + ~-fy P " + ~y P O . (20) 

If the above equations are substituted in the two interface flux 
relations, the contributions from element PAB to the continuity 
at node P is obtained. Similar contributions from all elements 
surrounding P then provide a pressure equation at P given by 

A'epe = 2~ A%p,b + Mp, (21) 

where D = VJAp. The pressure gradients in Eqs. (16) are 
evaluated locally for each element. The discrete continuity 
equation is obtained from 

v -  ~ = 0, (3) 

written as 

s f  (fi" n) dS = 0. (17) 

For each element enclosing the nodal control volume, there are 
two surfaces for which the above integral is to be evaluated. 
For element PAB, 

c 1 fc , ,f  ( f i . n ) d S - [ a , c [  o,. [xa, v - Ya,~]dS. (18) 

The integrals o,fc ?¢ dS and a,f ~ ~ dS are evaluated by Simp- 
son's rule, together with the relations (16). The resulting contri- 
butions from interface alc is then 

X (D,~ + 4Db, + Dc)] 

(19) 

X(Da,+4Db + D e ) I } .  

where Mp is the source term arising from the terms containing 
t~, 0 and Bu, By. 

We now seek a solution (u, v, p) that satisfies the set of 
discrete equations (11), (13), and (21). 

2.2. Single Grid Solution Strategy 

The system of coupled equations (11), (13), and (21) is solved 
by a sequential solution method, SIMPLER [18]. The iterative 
update involves solving in a cycle the pressure equation, fol- 
lowed by the two momentum equations. Starting from guessed 
velocity and pressure fields, the coefficients Ae and A,b are first 
assembled. Using these, the pressure equation is assembled 
through the above-mentioned formulae. The pressure equation 
is then solved by any convenient linear solver. For simplicity, 
we have used a point Gauss-Seidel scheme, which is repeated 
a few (nswpp) times. This pressure field is then used to solve 
the velocity equations. The previously assembled Ap and A,b 
are used, and a few (nswpm) sweeps of the Gauss-Seidel 
scheme are made. The new velocity field is then used for 
calculating the next iterate of the pressure field. 

In order to prevent the iterative process from becoming unsta- 
ble, underrelaxation is used in the Gauss-Seidel scheme. This 
is done by adding only a part of the change to the flow variables. 
In an implicit manner, the discrete equations are modified as 

Ae = Acid, A~ =A~la ,  

and 

B = B + (Aflo0(1 - ~)05old, (22) 

where B = Ve (B, - (Op/Ox)), Vp (By - (OplOy)), or Me, and 
05 = u, v, orp  for the x- or y-momentum balance, or the pressure 
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equation, respectively. Due to the above modifications of the 
momentum equations, the velocities t~ and t3 are redefined to be 

~t = (]~ A,bU,b)/Ap + (1 -- CQU 

and 

0 = (~,A,bV,b)/Ae + (1 -- C~)V, (23) 

where Ap now refers to the modified coefficient. 
The above iterative procedure is convergent, but the rate of 

convergence deteriorates as the mesh is refined. As more and 
more nodes are employed to accurately resolve the flow fea- 
tures, the rate of convergence becomes prohibitively slow due 
to the low frequency errors. Therefore, a technique to accelerate 
the convergence is required. Here we have used the multigrid 
method that has been shown to work well for structured grids 
[5, 7, 19-24, 26]. 

2.3. The Multigrid Method 

It is well known that a given mesh can efficiently smooth 
only those errors whose wavelengths are comparable to the 
mesh spacing. Therefore with very fine meshes, only a small 
portion of the error spectrum is efficiently removed. As the 
iterations progress, very soon the low frequency errors take 
over and degrade the convergence rate. The principle used in 
the multigrid method is that low frequency errors on a fine 
mesh transform to high frequency errors on coarser meshes. 
Hence, if the low frequency solution errors are transferred from 
a fine mesh to coarser meshes, relaxation on the coarse meshes 
can reduce these errors much faster than if only the fine mesh 
is used. Considerable acceleration can be achieved by using a 
sequence of coarse grids to which the errors are transferred 
(restricted) and smoothed, and subsequently interpolating (pro- 
longating) the corrections to the finer grid. 

Different cycling schemes are possible in any multigrid pro- 
cedure. Here we have used a fixed V-cycle as the basic cycling 
strategy. In a fixed V-cycle, a prespecified number of iterations 
(relaxations) are performed on a given grid after which the 
residuals are restricted to the next coarser grid. After relaxation 
on the coarsest grid, the corrections to the solution are prolon- 
gated successively to the finer grids. Relaxations are performed 
also during the upward leg of the cycle. The fixed cycle is 
preferred here over an adaptive cycling strategy since it is not 
always possible to assign an optimal smoothing rate as is re- 
quired in an adaptive strategy. The coarse grids can also be 
used to generate good initial solutions for adjacent finer grids. 
The multigrid scheme can be arranged as a nested iteration 
sequence in which the solution to the flow field is initiated on 
the coarsest grid and better and better estimates of the flow 
are obtained by successive prolongation and relaxation of the 
converged solutions. This is frequently referred to as the full 
multigrid procedure (FMG). 

Details of  the Present Implementation. Mesh generation 
and refinement. In the present procedure, the coarsest mesh is 
first generated as for any single grid procedure, by the Delaunay 
triangulation method. Subsequent finer grids are then generated 
by successively dividing each element into four elements (Fig. 
3a). A prespecified number of nested grids are thereby obtained. 
Each coarse grid element shares three nodes with the daughter 
finer grid elements. This grid arrangement makes the intergrid 
transfers as well as the construction of coarse grid equations 
simple. 

The coarse grid discrete equations. Successful multigrid 
procedures rely heavily on consistent practices for the construc- 
tion of the coarse grid equations and for the restriction and 
prolongation operators. Consistent restriction of variables and 
residuals to the coarser grids is the most important aspect of  
multigrid procedures for a system of equations, especially the 
fluid flow equations. For nonlinear equations, the full approxi- 
mation scheme (FAS) is the most suitable scheme for deriving 
the coarse grid equations. This is an extension of the more 
straightforward correction scheme (CS) that is used for linear 
equations. 

Consider the discrete fine grid equations given by 

Lfq y = F/, (24) 

where L I is the nonlinear operator matrix made of the convec- 
tion and diffusion terms, ql is the solution vector, and F I is the 
right-hand side vector. The superscript f is used to denote the 
fine grid. After a few iterations on the fine grid, the residual 
is computed as 

R i = F f - LSq s. (25) 

This residual is restricted to the next coarser grid, and it is 
required that the corrections satisfy the equation 

L ~ '  Aq I-~ = I~ IRI, (26) 

where L I-~ is the nonlinear operator on the coarse grid, AqI-~ 
is the vector of corrections on the coarse grid, and If f-j is the 
restriction operator. For the FAS scheme, Eq. (26) is rewritten as 

L/-~(Aqf-' + I//-~q/) = I/f~R/+ L/-l(l~-~qf) (27) 

= Ff -1  + I fy-IR f - (FI-~ - LI -a ( I f y - lq f ) ) .  

This can be written as 

L f - l q  f-I = F s-I + (I~-~R/-RY0-'), (28)  

where R0 j-1 is the residual on the coarse grid, calculated using 
the restricted solution vector, and qJ-~ is the solution on the 
coarse grid. After a fixed number of iterations on the coarse 
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(a) Mesh refinement. (b) Coarse and fine grid control volumes around node P. 

grid, the corrections implied by the coarse grid solution can be 
extracted from the relation 

Aq/-I = q:-: - I//-Iq/. (29) 

The above FAS scheme is used in a straightforward way 
for the momentum equations. The restriction and prolongation 
operators defined below provide a consistent and convergent 
multigrid procedure. The main complexity in the present 
scheme lies in the construction of the pressure equation which 
satisfies mass continuity, not for the nodal velocities, but for 
a different set of fluxes implicitly located at the cell faces of 
the control volume. As the success of the present procedure 
relies solely on this aspect, we give below details of the coarse 
grid pressure equation. 

The FAS form of the coarse grid pressure equation that 
results from the continuity satisfaction condition is derived as 
follows. We begin with the correction equation 

(V. fi,)t-~ = I~-'R{, (30) 

where the prime denotes the correction in fi, and the right- 
hand side is the restricted residual in the continuity equation. 
Equation (30) is expressed as 

V .  (fi + fi')f-' = I~-'R{ + ( V .  flY-'. (31) 

Now, 

~ = ~ +  D(Tp  

and 

0 = 0 + D ~7p, (32) 

where fi is the momentum velocity and ~rp is the pressure 
gradient that is used to evaluate the cell face fluxes. For the 
coarse grid equations, the components of fi are defined as 

fi = (R, + ~A.bU.b)/Ap + (1 -- OOU 

and 

f) = (Ro + ~A.bv ,~) /Ap + (1 - a)v, (33) 

where R, and R~ are the net coarse grid momentum residuals 
defined from Eq. (28) as 

R = I~ - :R: -  RYo -'.  (34) 

Substituting Eqs. (32) in (31), the coarse grid continuity equa- 
tion is given by 

V'(f~ + O Vp + ~' + O ~p,):-i  

= I~-'R{ + V" (ft + D ~p) / - l  (35) 

where p:-: is the restricted pressure l~-lp r. Equation (35) can 
be further rewritten as 

V " (D Vp + D gTp'):-' = I~-:R{ - V " fg-' 

+ ( V ' D V p  + V- fi):-: 

= I~-:R~ - V .  a y-' + R ~  I 

(36) 

where R~ ~ is the coarse grid residual in the pressure equation 
calculated using the restricted values of the variables. It must 
be noted that because of the segregated method of solution, fi' 
is set to zero for the pressure equation. Now, in the FAS practice, 
the left-hand side terms of Eq. (36) can be combined to give 
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V" (O ~p ) f - i  = - -V"  ~f-i _}_ g f - ,  ' (37) 

where pi-t is now redefined to be 

pf-I = lYf-lpf + ( p , ) / - I  (38) 

and 

R ~  ~ = l~-tR~ + W£' .  (39) 

Equation (37) has the standard structure of the pressure equation 
with an added residual R~ -t. 

Restriction and prolongation operations. Restriction and 
prolongation operators for structured rectangular and curvilin- 
ear grids are now well established [7, 15, 21]. For an arbitrarily 
generated sequence of unstructured grids the integrid transfers 
must be performed through systematic interpolations using ap- 
propriate geometric coordinates of the variable locations [25]. 
An advantage of constructing fine grids embedded within the 
coarse grids is that the simple injection scheme can be used as 
the restriction operator for the nodal variables. Thus coarse 
grid values for (u, v, p) are obtained by locating the fine grid 
daughter nodes coincident with the considered coarse grid 
nodes. 

For the residuals in the momentum equations, several fine 
grid residuals are summed to obtain the corresponding coarse 
grid residual I/i-~R/. We need to determine the fractions of the 
fine grid control volumes around a coarse grid node that contrib- 
ute to the coarse grid control volume (see Fig. 3b). The coarse 
grid control volume around P in two dimensions is given by 
the area ABCDEFGHIJKL. This is composed of fractions of 
the fine grid control volumes around each of the nodes P, A, 
B ....  and L. It is apparent that the complete fine grid control 
volume around P contributes to the coarse grid volume. It can 
be shown that the rest of the coarse grid volume is made of 
the sum of half the fine grid volumes around each of the nodes 
A, B .. . .  and K. Therefore, the restricted residual at point P is 
the sum of the fine grid residual at point P and half the fine 
grid residuals at the surrounding fine grid nodes. 

The prolongation process similarly is considerably simplified 
because of the mesh embedding. Coarse grid corrections to the 
solution are prolongated by direct injection at those fine grid 
nodes that coincide with the coarse nodes. For those fine grid 
nodes that lie in between the coarse nodes, the corrections are 
determined as averages of the corrections at the two surrounding 
coarse nodes. For example, in Fig. 3a, the coarse grid correc- 
tions at nodes P, A, and B are injected onto the next finer grid, 
whereas the corrections at a node such as D are determined as 
averages of the corrections at P and A. 

3. R E S U L T S  AND D I S C U S S I O N  

Flow in the triangular cavity was simulated for Reynolds 
numbers of 50, 100, 400, and 800, where the Reynolds number 
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is defined with respect to the top wall velocity and the depth 
of the cavity. Since the magnitude of the top wall velocity was 
taken to be 1, Reynolds number Re = 4/p. For each value of 
Re used, because of the absence of upwinding, a certain level 
of refinement of the mesh was required for convergence of 
the scheme. A total of six grid levels was used for all the 
computations. The coarsest mesh used had 35 nodes and 48 
elements, and the finest had 24897 nodes and 49152 elements. 
As mentioned in the previous section, multigrid cycling be- 
tween the grids was used to accelerate the convergence of the 
scheme. In general, CPU time increased with Reynolds number 
for the same mesh, in proportion to the number of iterations 
for convergence, and varied linearly with number of mesh 
points as a result of multigrid efficiency. Figure 4 shows for 
Re = 400 the dramatic improvement in the convergence rate 
with the multigrid method, as compared with the single grid 
scheme. In addition, Richardson extrapolation was used to get 
the solution for a still higher refinement. The extrapolation was 
done as follows. Letfrepresent the discrete solution to a given 
equation on a mesh of spacing h. It is assumed that f has a 
series representation of the form 

f-- - f (exact)  + glh + g2h 2 + g3h 3 + "" ". (40) 

It is sufficient that Eq. (40) be a valid definition for the order 
of the discretization. Here g~, g:, etc. are functions that do not 
depend on the discretization. For a second-order method such 
as the one used here, gl = 0. For the extrapolation, two discrete 
solutions,f1 and f2, obtained on distinct grids of spacing hj and 
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FIG.  5. Streamtraces and velocity vectors for (a) Re = 50, (b) Re = 100, (c) Re = 400, and (d) Re = 800. 

h2, respectively, are used to eliminate g2 from Eq. (40). As a 
result, we obtain 

flexact) = ( h ~ l  - h 2 f z ) / ( h ~  - h~)  + higher order terms. (41) 

If we neglect the higher order terms in Eq. (41), we get a new 
solution that is at least third-order accurate and given by 

f(exact) ~ f~ + (fl - f z ) / ( r  2 - 1), (42) 

where r = h f l h ~ .  For the sequence of  grids that we have used, 
r = 2. If  hi and h2 are small enough, then Eq. (42) represents 
a more accurate solution than f~ and f2. 

The procedure was found to be fairly sensitive to the value 
of c~, the underrelaxation factor in the Gauss-Seidel scheme. 
In the present study, ~ was varied from 0.5 to 0.9. For Re -< 
400, c~ = 0.7 was found to be optimum, while for Re = 500 
and 800, it had to be decreased to 0.6 and 0.5, respectively. 

Figures 5a-d  show the streamtraces in the flowfield for 
Re = 50, 100, 400, and 800, respectively. These are plots of 
the particle trajectories in the flow field. There is a slight mis- 
match in the starting and ending points of some of these trajecto- 
ries, especially in Fig. 5d, because of the small errors in the 
solution (O (10-6)) of nearly the same order as the velocity in 
this region. Let us now examine the features of the flowfield 
shown. All figures show similar eddies of decreasing size to- 
wards the lower comer of  the cavity. For all Reynolds numbers, 
the lower three eddies have their centers along the centerline 
of  the cavity. The topmost eddy, where inertial effects are 

dominant, first moves to the right as Re increases and later 
moves back towards the center of the cavity, while the lower 
eddies remain unaffected. This is in keeping with Moffat 's [12] 
observation that close to the stationary comer, the flowfield is 
independent of  any disturbance far away from it. Further, as 
determined by Moffat, the distances of  the lower three edies 
from the comer follow a geometric sequence. This is observed 
for all values of Re reported here. In particular, for Re = 50, 
all eddy centers show the sequence, i.e., ( Y z l Y 1 )  --~ ( Y f l Y 2 )  ~" 

( Y 4 / Y 3 )  "~ 2, where Yi is the distance of  the ith eddy from the 
lower comer. The topmost eddy deviates from this sequence 
with increase in Reynolds number, since inertial effects near 
the top wall become more important as Re increases. It must 
be noted that Moffat 's analysis is valid only in those regions 
where inertial effects are negligible. Therefore, for Re = 800, 
(Y2/Y1) ~ (Y3/Y2) ~" 2, while (YJY3)  ~ 1.5. A similar sequence 
for the eddy intensities is observed, as will be seen shortly. 

Figures 6a and b show plots of  the x-velocity along the 
centerline of  the cavity for Re = 50 and 800, respectively. If 
the ordinate of these plots is enlarged, detailed information 
about the eddies is obtained. For those eddies which lie symmet- 
rically about the centerline, u along the centerline vanished at 
their centers. Therefore, the points where the curve intersects 
the x-axis coincide with the centers of all eddies except the 
topmost. Further, the maxima in these plots give a measure of 
the intensities of  the respective eddies (see [12]). If  l i  is the 
intensity of the ith eddy from the lower comer, then for Re = 
50, ( 1 2 / 1 0  ~ (13/12) ~ ( I J I 3 )  ~ 400, while for Re = 800, 
( I f l L )  ~ ( I3 l i2)  ~- 400, and ( I4 / I3)  ~ 30. Here again it is seen 
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FIG. 6. Centerline x-velocity variation for (a) Re = 50 and (b) Re = 800. 

that the intensities of  the eddies for low Reynolds numbers  
follow a geometric sequence. It was shown by Moffat [12] 

that both ratios (Y,+,/Yi) and (li+~/le) are functions of  only the 
stationary comer  angle. As this angle increases, both ratios 
increase rapidly, till no eddies are observed for angles greater 
than 146 ° . In particular, up to angle of  40 ° , adjacent eddies are 

of  comparable size, but for larger comer  angles, the ratio (Y,+~I 
}1,.) increases rapidly to about l 0 for an angle of 90 °. This is 
probably the reason why for the equilateral triangle studied by 
Ribbens  et al. [11], only the topmost eddy could be resolved. 
The lower eddies were probably too small  to be captured on 
the grids used by them. This is also the reason why we chose 
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a b 

FIG. 8. Contours of constant vorticity for (a) Re = 50 and (b) Re = 800. 

a smaller comer angle in our study, so that we could observe 
more than one eddy in the flow field. 

Figures 7a and b show the plots of  pressure along the center- 
line for Re = 50 and 800, respectively. It is seen that variations 
in pressure are observed only close to the top wall. The pressure 

field then quickly levels off to a constant value in the lower 
region. 

Plots of the contours of  constant vorticity defined as w = 
[(Ov/Ox)  - (Ou/Oy)]  are shown in Figs. 8a and b for Re = 50 
and 800, respectively. It is seen that for small Re, the vorticity 
field is symmetrical about the centerline. However, as Re in- 
creases, the vorticity variation moves to the boundary regions 
of  the cavity, while the interior of  the topmost eddy tends to 
attain constant vorticity. The simulations could not be carried 
out for high enough Reynolds numbers to verify Batchelor's 
[13] analytical predictions for inviscid flow. However, from 
the trend of the vorticity plots, it can be conjectured that for 
high enough Reynolds numbers, there will be only a thin bound- 
ary layer of vorticity variation around the topmost eddy, with 
an inner region of  constant vorticity. Figures 9a and b show 
the plots of vorticity along the centerline for Re = 50 and 800, 
respectively. Here it appears that on the scale of the graph, 
most of  the vorticity variation is near the top wall, where there 
is maximum shear. 

Figures 6, 7, and 9 also show plots of the solution at two 
different mesh sizes and of an extrapolated solution. These 
indicate the accuracy of  the solution obtained. In order to report 
grid-independent results, the simple but effective technique of 
Richardson extrapolation is often employed [26-28]. Here, as 
mentioned earlier, the solution on two consecutive grids is used 
to extrapolate to a solution of higher accuracy. If the two 
grids are sufficiently fine, good convergence is observed to the 
extrapolated solution. This is indeed seen for the grids used 
here (Figs. 6, 7, and 9). The curves of Figs. 7a and b have been 
obtained by subtracting a constant reference pressure from the 
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TABLE I 

Characteristics of the Flow Field for Different Reynolds Numbers 

117 

Reynolds Extrema in the 
number Location of the eddy centers centerline x-velocity 

50 (0, -3.550) (0, -3.092) (0.002, -2.182) (0.050, -0.395) 5.8 × I0 4 
-0 .219 

100 (0, -3.545) (0, -3.085) (0.005, -2.162) (0.097, -0.400) 6.4 × 10 4 
-0.218 

400 (0, -3.475) (0, -2.950) (0.040, -1.882) (0.225, -0.450) 2.7 × 10 -3 
- 0.242 

800 (0, - 3.427) (0, - 2.852) (0.000, - 1.695) (0.153, - 0.545) 0.0116 
-0.323 

pressure field. This does not alter the solution, because in incom- 
pressible flows, only the gradients of pressure appear in the 
equations. 

Table I summarizes the important characteristics of the flow 
at the four Reynolds numbers reported. The extrapolated values 
are not reported separately, since in the graphical method used 
to determine the values, there were imperceptible differences 
between the numerical solution and the extrapolated one. Table 
I may be used for benchmarking other numerical solutions. 

4. SUMMARY AND CONCLUSIONS 

In this paper, we have presented the results of a steady 
viscous flow simulation in a triangular cavity. With the use of 
triangular grids and a multigrid method, the solution was ob- 
tained without encountering any of the difficulties reported for 
structured grid-based methods [11]. The most significant flow 
feature was the occurrence of a sequence of eddies of rapidly 
decreasing size and intensity towards the lower stationary cor- 
ner of the cavity. The attributes of these eddies and of the 
vorticity distribution were successfully verified with the analyti- 
cal predictions of Moffat [12]. Richardson extrapolation was 
used to ascertain grid independence of the results. Extensions 
of this work are currently being pursued. They include the use 
of adaptive refinement in place of uniform refinement to obtain 
the solution for higher Reynolds numbers, and the use of the 
present numerical procedure for simulating flows in more com- 
plex geometries with Neumann and periodic boundary condi- 
tions and with unsteady terms. 
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